Differential Entropic Clustering of Multivariate Gaussians
نویسندگان
چکیده
Gaussian data is pervasive and many learning algorithms (e.g., k-means) model their inputs as a single sample drawn from a multivariate Gaussian. However, in many real-life settings, each input object is best described by multiple samples drawn from a multivariate Gaussian. Such data can arise, for example, in a movie review database where each movie is rated by several users, or in time-series domains such as sensor networks. Here, each input can be naturally described by both a mean vector and covariance matrix which parameterize the Gaussian distribution. In this paper, we consider the problem of clustering such input objects, each represented as a multivariate Gaussian. We formulate the problem using an information theoretic approach and draw several interesting theoretical connections to Bregman divergences and also Bregman matrix divergences. We evaluate our method across several domains, including synthetic data, sensor network data, and a statistical debugging application.
منابع مشابه
Clustering Multivariate Normal Distributions
In this paper, we consider the task of clustering multivariate normal distributions with respect to the relative entropy into a prescribed number, k, of clusters using a generalization of Lloyd’s k-means algorithm [1]. We revisit this information-theoretic clustering problem under the auspices of mixed-type Bregman divergences, and show that the approach of Davis and Dhillon [2] (NIPS*06) can a...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملEntropic Priors for Discrete Probabilistic Networks and for Mixtures of Gaussians Models
The ongoing unprecedented exponential explosion of available computing power, has radically transformed the methods of statistical inference. What used to be a small minority of statisticians advocating for the use of priors and a strict adherence to bayes theorem, it is now becoming the norm across disciplines. The evolutionary direction is now clear. The trend is towards more realistic, flexi...
متن کاملLocation and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalised Hyperbolic distribution. The Generalised Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate ...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006